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Higher-order assemblies of oligomeric cargo
receptor complexes form the membrane scaffold of
the Cvt vesicle
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Abstract

Selective autophagy is the mechanism by which large cargos are
specifically sequestered for degradation. The structural details of
cargo and receptor assembly giving rise to autophagic vesicles
remain to be elucidated. We utilize the yeast cytoplasm-to-vacuole
targeting (Cvt) pathway, a prototype of selective autophagy,
together with a multi-scale analysis approach to study the molecu-
lar structure of Cvt vesicles. We report the oligomeric nature of
the major Cvt cargo Ape1 with a combined 2.8 Å X-ray and nega-
tive stain EM structure, as well as the secondary cargo Ams1 with
a 6.3 Å cryo-EM structure. We show that the major dodecameric
cargo prApe1 exhibits a tendency to form higher-order chain struc-
tures that are broken upon interaction with the receptor Atg19
in vitro. The stoichiometry of these cargo–receptor complexes is
key to maintaining the size of the Cvt aggregate in vivo. Using
correlative light and electron microscopy, we further visualize key
stages of Cvt vesicle biogenesis. Our findings suggest that Atg19
interaction limits Ape1 aggregate size while serving as a vehicle
for vacuolar delivery of tetrameric Ams1.
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Introduction

Macroautophagy (hereafter referred to as autophagy) is a highly

conserved process of intracellular clearance in eukaryotes through

which cytosolic components are engulfed into double-membrane

vesicles and transported to degradative compartments. During

this process, autophagosomes encapsulate large molecular cargos

such as macromolecules, protein aggregates, organelles, viruses,

and bacteria that are too large in size to be degraded by the

ubiquitin proteasome system [1]. The process is thought to be

mediated by a total of 41 proteins [2] and commences with the

formation of a cup-shaped phagophore in the cytosol triggered by

the autophagy core machinery [3]. This machinery includes the

Atg1 kinase, the class III phosphatidylinositol 3-kinase, and the

Atg12–Atg5–Atg16 complex that finally conjugates the C-terminus

of Atg8 to phosphatidylethanolamine (PE) lipids. Thus, the auto-

phagy core machinery decorates the expanding phagophore with

Atg8-PE and mediates the growth of the double-membrane vesi-

cle. In the past years, it has emerged that many cargos are recog-

nized in a highly selective fashion by specific receptors that

function as molecular adaptors bridging the cargo with the

autophagosomal marker Atg8/LC3 on forming autophagosomes,

[1,4–7].

The earliest discovered selective autophagy pathway in Saccharo-

myces (S.) cerevisiae is the cytoplasm-to-vacuole targeting (Cvt)

pathway, through which hydrolytic enzymes are sequestered into

double-membrane vesicles, termed Cvt vesicles, and transported to

the vacuole [8,9]. Despite being a biosynthetic pathway, the Cvt

pathway utilizes the core autophagy machinery through adaptors

that bind the Atg1 complex and Atg8 [10,11]. Once the Cvt vesicle

outer membrane fuses with the vacuole, the inner membrane of the

remaining Cvt body [12,13] is degraded and the enzymes are

released into the vacuolar lumen, where the proteases are subjected
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to a process of maturation [12,14,15] and finally are catalytically

active to degrade vacuolar components.

The best-characterized cargo component of the Cvt vesicle is the

vacuolar aminopeptidase I (Ape1) [16]. Ape1 is synthesized in the

cytosol as a 55-kDa zymogen that includes an N-terminal propeptide

(hereafter referred to as prApe1), which oligomerizes into a dode-

camer [17,18] and further assembles into larger aggregates in a

propeptide-dependent manner [19]. The resulting prApe1 complex

is considered an indispensible cargo of the Cvt vesicle and is recog-

nized by the selective Atg19 receptor via the N-terminal propeptide

[19–24]. Following fusion of the Cvt vesicle with the vacuole, cargo

is released into the vacuolar lumen where prApe1 undergoes

processing to mature Ape1 (hereafter referred to as mApe1) by

cleavage of the N-terminal propeptide. In addition to prApe1, Atg19

also binds another cargo hydrolase a-mannosidase 1 (Ams1) [25,26]

via a site distinct from the prApe1 binding site, thus forming the Cvt

complex. In contrast to the major cargo Ape1, Ams1 was shown to

be dispensable and is considered a secondary cargo of the Cvt vesi-

cle [23]. The Cvt complex interacts with Atg11 via binding of phos-

phorylated Atg19 [27] and travels toward the pre-autophagosomal

structure where Atg19 binds lipidated Atg8 to associate the Cvt

complex with the autophagy core machinery and the nascent Cvt

vesicle [23].

As the Cvt pathway utilizes a large proportion of the yeast auto-

phagy protein machinery, it is considered a prototype system to

study the structure and dynamics of selective autophagy in eukary-

otes [28]. Despite the fact that the Cvt vesicle carries a relatively

small number of well-defined cargo proteins that are recognized by

the autophagy machinery, the assembly structures of the cargos and

the interplay with the autophagy receptor Atg19 are poorly under-

stood. Moreover, the stoichiometry and how they give rise to the

observed ultrastructure of the Cvt vesicle in the cell remain to be

established. Here, we have elucidated the X-ray and cryo-EM struc-

tures of the major cargo Ape1 and the secondary cargo Ams1,

respectively. We have also investigated the oligomeric state of the

receptor Atg19, the propensity of the major cargo to form higher-

order assemblies, and how they interact with Atg19. We determined

the stoichiometry of these components in vivo and show that the

relative levels of Atg19 and Ape1 are key to maintaining the size of

Cvt structures. Further, we have visualized key stages of Cvt vesicle

biogenesis in the cellular environment using correlative light and

electron microcopy (CLEM). Our results allow the construction of a

structural model of the Cvt vesicle at multiple levels of resolution as

it occurs in the cellular context. The data also reveal how molecular

assemblies of cargo and receptor proteins serve as important deliv-

ery vehicles and scaffolds that guide the formation of selective

autophagy vesicles.

Results

prApe1 dodecamers form higher-order assembly structures

In order to shed light on the molecular organization of the major

cargo of the Cvt vesicle, we determined the 3D structural model of

Ape1 using a combined electron microscopy and X-ray crystallo-

graphy approach. First, we expressed full-length S. cerevisiae

prApe1 and imaged the protein using negative stain electron

microscopy (EM) (Fig 1A). We observed particles of 18 nm diame-

ter including views compatible with described dodecamers of

mApe1 [17,18]. Interestingly, a large proportion of them are capable

of forming connected doublets, triplets, and larger assemblies

hampering further more detailed structural analysis. When express-

ing S. cerevisiae mApe1 (sc-mApe1) lacking the N-terminal propep-

tide, we predominantly observed isolated dodecamers when imaged

at identical protein concentration and buffer conditions (Fig 1A–C),

indicating that the propeptide stimulates the trans-interactions

between multiple prApe1 dodecamers. Due to the presence of

smaller particles of putative mApe1 hexamers (Fig 1B, white arrow-

heads), we stabilized and purified sc-mApe1 using a GraFix

gradient [29] (Fig 1D). Based on the twofold and threefold end-on

views from class average analysis (Fig 1E), we determined a low-

resolution negative stain structure at 24 Å resolution by imposing

tetrahedral symmetry (Figs 1F and G, and EV1E). In order to further

improve the resolution of the mApe1 EM structure, we used an

Ape1 homolog of 40% sequence identity from the thermophilic fila-

mentous fungus Chaetomium (C.) thermophilum (ct-mApe1) [30], to

exploit increased stability of dodecameric species when compared

with sc-mApe1 (Fig EV1). Moreover, we determined the crystal

structure of ct-mApe1 organized in dodecamers at 2.8 Å resolution.

In the crystal, ct-mApe1 is present as dodecamers, which are formed

by two asymmetric units each containing six ct-mApe1 molecules

(Table 1, Materials and Methods). The ct-mApe1 X-ray structure is

compatible with the dimensions of the sc-mApe1 EM projections

and fits very well into the tetrahedral low-resolution EM density

(Figs 1G and EV2). The crystal structure of the ct-mApe1 dodecamer

has an RMSD of 0.7 Å on Ca atoms in comparison with the previ-

ously determined crystal structure of sc-mApe1 (PDB 4r8f) [31]

(Fig EV2G and H). The superposition shows a close structural over-

lap of the dodecamer assemblies except for a noticeable difference

in the active site that is well defined in our structure due to the pres-

ence of the cofactor zinc, but disordered in the sc-mApe1 crystal

(Fig EV2G). Moreover, the geometric positioning of the N-terminal

propeptide on the surface of the dodecamer is consistent with our

observed trans-interactions of dodecamers leading to higher-order

assemblies (Fig 1A, C and G). In contrast to previous studies that

analyzed detergent-solubilized prApe1 preparations [31], we show

that untreated in vitro purified prApe1 has the tendency to form

larger assemblies and may thus contribute to a higher level of struc-

tural organization in addition to the described oligomeric state of

dodecamers.

Cryo-EM structure of tetrameric Saccharomyces cerevisiae Ams1

In order to further the structural analysis of the components in Cvt

vesicles, we determined the 3D structure of the secondary cargo

Ams1 from S. cerevisiae using cryo-EM. After expression and purifi-

cation of 125-kDa full-length Ams1, we imaged negative stain

embedded samples using EM and observed homogeneous particles

of 13 × 16 nm in dimension (Fig 2A). The images revealed class

average views with two perpendicular twofold rotation axes indica-

tive of dihedral symmetry (Fig 2A) and were used for determination

of an initial low-resolution 3D model of Ams1. After vitrification of

the sample (Fig 2B and C), we refined the tetrameric Ams1 structure

to 6.3 Å overall resolution from 33,588 particles (Figs 2D and E,

and EV3A). Subsequently, we built a complete pseudo-atomic model
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based on a homology model of the mannosidase core combined

with two additional N-terminal domains (Fig 2F). The mannosidase

core (residues 287–1083) was derived from Streptoccocus (S.) pyo-

genes a-mannosidase (PDB 2wyh) that contains three domains

present in Ams1: an a/b barrel, a three-helix bundle, both of

which participate in the catalytic center (Fig EV3B), as well as a

b-sandwich domain (Fig 2G and H). For the remaining N-terminus,

we built two domains: a jelly-roll fold (residues 45–203) and a four-

helix bundle (residues 17–27, 209–271) based on distant homology

and the EM density (Movie EV1).

In contrast to the homologous dimeric S. pyogenes a-manno-

sidase [32], S. cerevisiae Ams1 forms a tetramer. The transverse

A

D

G

E F

B C

Figure 1. Saccharomyces cerevisiae prApe1 higher-order organization and Chaetomium thermophilummApe1 crystal structure fitted into S. cerevisiaemApe1
low-resolution EM map.

A Negative stain electron micrograph showing the tendency of S. cerevisiae prApe1 (sc-prApe1) dodecamers to form higher-order assemblies or chains (black
arrowheads).

B Negative stain electron micrograph of S. cerevisiae mApe1 (sc-mApe1) showing monodisperse dodecameric particles (circles) as well as hexameric particles (white
arrowheads).

C Bar plot showing the occurrence of single, double, triple, or multiple aggregates of sc-prApe1 in comparison with sc-mApe1. Insets show single, double, triple, or
multiple dodecamers. A total of n = 3,186 particles were counted in the case of sc-prApe1 and n = 3,107 particles were counted in the case of sc-mApe1. Particles
were picked from 20 different micrographs. ***P < 2.2 × 10�16 (Pearson’s chi-squared test).

D Negative stain electron micrograph of GraFixed sc-mApe1 showing dodecameric particles (circles).
E Class averages of sc-mApe1 dodecamers including views of twofold and threefold symmetry.
F Fourier shell correlation of the EM reconstruction of the sc-mApe1 dodecamer indicates a resolution of 24 Å.
G C. thermophilum mApe1 crystal structure fitted into electron microscopy (EM) map of sc-mApe1 dodecamer. Each of the 12 chains is depicted by a different color. A

black sphere represents the N-terminus where the propeptide would emanate from the dodecamer. From left to right: twofold axis view from the edge, threefold axis
view from the facet, and threefold axis view from the vertex.
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interface connecting two monomers perpendicularly to the Ams1

length axis is formed by the b-sandwich domain and is located on

the opposite side of the dimerization interface described in the

homologous mannosidase structure (Fig 2I and J, and Movie EV1).

In addition, we identified an N-terminal four-helix bundle domain

that comprises the major longitudinal interface bridging two mono-

mers along the Ams1 length axis within the tetramer (Fig 2I and K).

To validate whether the surface formed by the four-helix bundle is

responsible for mediating longitudinal contacts within the tetramer,

we generated a W234E mutant by introducing a negatively charged

residue to selectively disrupt this longitudinal interface (Fig 2K).

While the Ams1 W234E mutant is still catalytically active

(Fig EV3C), size-exclusion chromatograms show a peak shift toward

smaller molecular species in comparison with wild-type Ams1

(Fig EV3D). When the fractions were analyzed by negative staining

EM, we predominantly observed particles smaller than wild-type

tetramers (Fig 2L). Classification of the W234E particles revealed

smaller two-winged class averages of 13 × 10 nm dimensions corre-

sponding to approximately half the size of tetrameric Ams1.

Comparison with simulated reprojections of putative Ams1 dimers

strongly suggests a dimeric Ams1 complex with longitudinal

contacts disrupted and transverse contacts still maintained (Fig 2L).

Moreover, in order to test whether these Ams1 samples have the

capability of binding the native receptor Atg19, we subjected Ams1

wild-type tetramers and W234E dimers to an Atg19 pull-down

assay. The corresponding SDS–PAGE shows that wild-type

tetrameric Ams1 binds MBP-Atg19 efficiently, whereas the

introduction of a W234E mutation drastically reduces binding

(Fig EV3E). This suggests that the Ams1 wild-type tetramer is

required for in vitro recognition by the autophagy receptor Atg19.

Together, our cryo-EM data and the pseudo-atomic model reveal

that the N-terminal four-helix bundle domain is critical for the Ams1

tetrameric assembly.

Atg19 forms a trimer competing with prApe1 higher-order
assembly formation

Next, we focused on characterizing the higher-order molecular

organization of the prApe1 cargo from S. cerevisiae as it is found

in the Cvt complex together with Atg19. Atg19 is the selective

receptor that recognizes the major cargo prApe1 and the

secondary cargo Ams1 to form the Cvt complex [4,22,23]. We

expressed and purified S. cerevisiae Atg19 to biochemically

characterize the interactions with the major cargo Ape1 in

more detail. Using size-exclusion chromatography coupled to

Table 1. Data collection and refinement statistics.

Data collection

Resolution range (Å) 58.7–2.75 (2.8–2.75)

Space group P 2 21 21

Cell dimensions

a, b, c (Å) 121.0, 143.9, 201.3

a = b = c (°) 90

Rmerge 0.13 (0.77)

CC0.5 0.98 (0.52)

<I>/s(I) 7.7 (1.3)

Completeness (%) 98.7 (93.5)

Multiplicity 3.1 (3.0)

Refinement

Resolution (Å) 49.1–2.75

No. reflections 172,990

Rwork/Rfree (%) 19.2 (30.5)/23.9 (36.2)

No. atoms 20,614

Protein 20,394

Ion 12

Water 208

B-factors (Å2)

Protein 24.6

Ion 26.8

Water 47.3

R.m.s deviations

Bonds (Å) 0.012

Angles (°) 1.526

Figure 2. Cryo-EM structure of Saccharomyces cerevisiae Ams1.

A Electron micrograph of negatively stained Ams1 with particles and higher-order assemblies (arrows). Class averages exhibit two distinct twofold views consistent
with D2 symmetry. Scale bar, 10 nm.

B Electron cryomicrograph of Ams1 with particles highlighted (circles).
C Selected particles (top row) are shown with corresponding class averages (bottom row). Scale bar, 10 nm.
D Fourier shell correlation indicates a resolution of 6.3 Å according to the 0.143 criterion.
E Top view of the cryo-EM structure, four Ams1 molecules were segmented and colored (dark blue, beige, red, light blue).
F Molecular architecture of Ams1 monomer. Primary structure, two map segments with fitted pseudo-atomic models are shown. Left: The N-terminal portion was built

from distant homology models: a four-helix bundle (17–27, 209–271) in yellow and a jelly-roll fold (45–203) in red. Right: The a-mannosidase core (287–1,083) with an
a/b barrel (287–573) in blue, a three-helix bundle (574–671) in green, and the b-sandwich domain (672–1,083) in purple.

G Density section through the Ams1 monomer with three-helix bundle in the center.
H Complete atomic model of Ams1 with active site indicated as yellow sphere fitted into the cryo-EM map. Corresponding 3D structure is shown in Movie EV1.
I Schematic representation of Ams1 domain distribution highlighting the molecular interfaces within the tetramer.
J The b-sandwich domain (purple) makes up the transverse interface between chain A and chain B.
K The N-terminal four-helix bundle (orange) mediates the longitudinal interface. Asterisk denotes position of W234E mutation between chains A and C/D.
L Negatively stained W234E Ams1 mutant reveals predominantly smaller particles when compared with wild-type tetramers. Representative class averages show a

two-lobed structure consistent with reprojections of chain A and B (dark blue and beige) dimers depicted in ribbon and surface representation below. Scale bar,
10 nm.
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multi-angle light scattering (SEC-MALS), we determined a

molecular weight of 142 kDa corresponding to a trimeric

homo-oligomer in solution (Fig 3A). By mixing purified prApe1

dodecamers together with Atg19, we reconstituted the Atg19/

prApe1 complex and showed that Atg19 selectively binds prApe1

and not mApe1, confirming the importance of the propeptide for

Atg19 interaction and demonstrating the binding to full-length

prApe1 for the first time (Fig 3B). We further analyzed the

cargo–receptor complex by co-expressing prApe1 and Atg19. The

binary complex was purified by affinity chromatography (Fig 3C)

and subjected to size-exclusion chromatography where Atg19 and

prApe1 co-eluted as a complex larger than 500 kDa (Figs 3D and

EV4A and B). Negative staining EM of the purified binary

complex revealed two different types of particles, reminiscent

either of prApe1 dodecamers alone or of dodecamers with extra

density associated with the particle (Fig 3E and F). Class aver-

ages confirmed that 20% of the particles had extra density at the

periphery of the tetrahedral envelope, indicative of Atg19 bind-

ing. Interestingly, prApe1 dodecamers that co-purified with Atg19

displayed a reduced tendency to form higher-order assemblies

(Figs 1A and 3E and G). In line with this observation, prApe1

dodecamers became more soluble in the presence of Atg19 in

pelletation assays, in comparison with prApe1 dodecamers alone

(Fig EV4C and D). The observed change of prApe1 assembly

state reveals that trimeric Atg19 competes with propeptide trans-

interactions between different dodecamers, thereby solubilizing

higher-order assemblies in vitro and having the potential to also

regulate the relative size of the Cvt aggregate. Given our observa-

tion, we hypothesized that prApe1 forms larger structures in the

absence of Atg19 in vivo. In order to test this hypothesis, we

labeled Cvt cargo prApe1 with green fluorescent protein (GFP) in

S. cerevisiae ypt7D strains, which led to enrichment of prApe1

puncta due to block of vesicle fusion with the vacuole [33].

Subsequently, we analyzed the intensity of prApe1-GFP spots in

living cells, either in the presence or in the absence of Atg19

(Figs 3H and EV4E). In line with our hypothesis, we measured

the prApe1 fluorescence intensity in the Atg19 knockout strain to

be on average 2.3 � 0.6 times brighter while the overall prApe1

level remained constant when compared with the Atg19 control

strain (Figs 3I and EV4E). Together, our data show that the level

of the autophagy receptor Atg19 controls the size of the prApe1

structures in vitro and in vivo.

Stoichiometry of the Cvt complex determined by quantitative
fluorescence microscopy in vivo

As the major cargo prApe1 is commonly found in large protein-

dense aggregates of the cellular Cvt complex or vesicle [12], we

wanted to characterize the stoichiometry of the Cvt complex in

living yeast cells to assess how the observed tendency of forming

size-regulated higher-order assemblies is determined by the relative

concentrations of prApe1, Ams1, and Atg19 in vivo. To measure the

stoichiometry of the prApe1/Atg19/Ams1 complex, we labeled the

Cvt cargos prApe1 or Ams1 as well as the Atg19 receptor with GFP.

For each of the GFP-labeled proteins, we then compared the relative

fluorescence intensities in cells expressing Nuf2-GFP, whose molec-

ular abundance had been calibrated previously [34–36]. As our

study focuses on the Cvt pathway, we evaluated only prApe1-GFP

or Ams1-GFP puncta colocalizing with Atg19-mCherry, thereby

excluding free prApe1 or Ams1 complexes in the cytosol [4]

(Fig 4A). Fluorescence quantification from these three yeast strains

allowed us to determine the relative abundance of Cvt cargos and

receptor, as 3,585 � 318 molecules of prApe1, 501 � 62 molecules

of Ams1, and 332 � 35 molecules of Atg19 per punctum were

measured. Our results indicate that Ape1 is ~10 times more abun-

dant than Atg19, whereas Ams1 is on average approximately 2

times more abundant than Atg19 (Fig 4B). The 7-fold excess of

prApe1 over Ams1 confirms the categorization that prApe1 is the

major and Ams1 the secondary cargo. The still relatively high ratio

of autophagy receptor Atg19 suggests that instead of simply bridging

decorated cargo assemblies with the membrane, Atg19 is also incor-

porated into Cvt aggregates, which is in line with the suggested role

in the size regulation as indicated from our in vitro and in vivo inter-

action studies.

Figure 3. prApe1/Atg19 complex.

A SEC-MALS profile of Atg19 yields a molecular weight estimate of 142 kDa (measured in triplicate).
B Right: In vitro pull-down binding assay and subsequent SDS–PAGE. Amylose beads are used as a bait to demonstrate interaction of purified prApe1 dodecamers with

MBP-Atg19 (lane 1), whereas purified mApe1 dodecamers are not capable of interacting with MBP-Atg19 (lane 3). As controls, MBP does not bind prApe1 and mApe1
(lanes 2 and 4). Left: SDS–PAGE showing input of the corresponding pull-down assay.

C Co-expression of MBP-Atg19 and prApe1 in Sf21 cells; SDS–PAGE of eluate from amylose beads.
D Size-exclusion chromatography profile (Superose 6 column) of the prApe1/Atg19 complex after anti-MBP-Atg19 purification and cleavage of the MBP tag (top). SDS–

PAGE of peak fractions of the gel filtration profile (bottom). Samples were run on two separate gels.
E Negative stain electron micrograph corresponding to the size-exclusion chromatography peak at 10 ml retention volume of (D). Several prApe1 dodecamers possess

extra density corresponding to Atg19 and are highlighted in the insets.
F Comparison between class averages of purified prApe1 dodecamers with class averages of prApe1 dodecamers that were co-purified with Atg19.
G Bar plot of occurrence of single, double, triple, and multiple dodecamers from the prApe1 and the prApe1/Atg19 sample. A total of n = 3,186 particles were counted in

the case of prApe1 and n = 3,340 particles were counted in the case of prApe1/Atg19. Particles were picked from 20 different micrographs. ***P < 2.2 × 10�16

(Pearson’s chi-squared test).
H Epifluorescence microscopy images of the prApe1-GFP/Atg19-mCherry/ypt7D, prApe1-GFP/Atg19D/ypt7D Saccharomyces cerevisiae cells that were used to analyze the

fluorescence intensity of all prApe1-GFP spots. BF represents bright-field images.
I Bar plot showing the ratio between the GFP intensity of prApe1 spots in prApe1-GFP/Atg19-mCherry/ypt7D versus prApe1-GFP/Atg19D/ypt7D S. cerevisiae cells. The

intensity of Ape1-GFP was normalized over the average fluorescence intensity of Nuf2-GFP measured in kinetochores as performed in [36]. A total of 54 prApe1-GFP
spots and 80 Nuf2-GFP spots were analyzed in prApe1-GFP/Atg19D/ypt7D cells, whereas 52 prApe1-GFP spots and 98 Nuf2-GFP spots were analyzed in prApe1-GFP/
Atg19-mCherry/ypt7D control cells. Error bars indicate standard error of the mean (SEM). *P = 0.03 (Z test).
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Correlative light and electron microscopy identifies multiple
stages of Cvt vesicle biogenesis

Given our in vitro structural and biochemical findings on the major

prApe1 and secondary Ams1 Cvt cargos, as well as the Atg19 recep-

tor, we wanted to relate them with the in vivo Cvt vesicle ultrastruc-

ture. Therefore, we visualized and statistically evaluated their

morphology and shapes using a recently described CLEM procedure

coupled to electron tomography [37]. For this approach, we tagged

prApe1 with GFP and Atg19 with mCherry in ypt7D S. cerevisiae cells

(Fig 5A) to specifically localize Cvt vesicles in plastic sections by 3D

electron tomography (Fig 5B and Movie EV2). In order to minimize

the effect of labels, we also prepared and imaged sections from cells

expressing solely prApe1-GFP (Fig EV5A–G). Qualitatively, we found

that in both data sets, the morphological features appeared very simi-

lar (Fig EV5H–O). From a total of 38 correlated tomograms, 10 loca-

tions were poorly preserved and excluded from further analysis.

From the remaining 28 sites, 26 cases displayed dense homogeneous

protein content ranging in diameter from 120 to 250 nm (Fig 5C),

compatible with the 150 nm reported in earlier EM studies [12]

(Fig EV5A–F and H–N). We found that the average observed Cvt

vesicle is an ellipsoid with a cross section of 165 × 185 nm dimen-

sions, deviating from a perfect circular cross section of a sphere by an

average ellipticity of 11%. Although we specifically targeted prApe1

for visualization, we did not recognize the molecular shapes of indi-

vidual 18 nm wide prApe1 dodecamers due to the poor contrast and

limited preservation after resin embedding. Interestingly, two tomo-

grams showed autophagosomes that were larger than 300 nm in x

and y dimensions and easily discernible from Cvt vesicles due to the

presence of cytoplasmic content such as other membranes and ribo-

somes [12,22] (Fig EV5G and O). We categorized the well-defined

correlated sites by grouping the tomograms into four distinct ultra-

structures: cytoplasmic Cvt aggregate without membrane structures

(29%) (Figs 5D and EV5N, and Movie EV3), partially membrane-

enwrapped Cvt aggregate (10%) (Figs 5E and EV5F, and Movie

EV4), double-membrane Cvt vesicles (54%) (Figs 5F and EV5A–E

and H–M, and Movie EV5), and autophagosomes (7%) (Fig EV5G

and O). Our data show that Atg19 is already present in cytoplasmic

Cvt aggregates also in the absence of membrane structures. In a total

of 20 sites (71%), we identified membrane structures from Cvt vesi-

cles or autophagosomes, which were characterized by the presence

of two juxtaposed bilayers of 11.8 � 1.7 nm width that are approxi-

mately two times wider than the other cellular membranes present in

the tomograms (Fig 5B). The reconstructed 3D tomograms revealed

double-membrane structures that tightly enwrap dense Cvt aggre-

gates and around 74% of them localize as close as 5 nm in three

dimensions to other single-bilayer membranes of the cell (Movie

EV5). In conclusion, our studies quantitatively describe the three-

dimensional shapes and cellular environment of the main stages of

Cvt vesicle biogenesis in the cytosol.

Discussion

By establishing a structural model of the Cvt pathway on multiple

levels of resolution, we provide fundamental insights into a proto-

type example of selective autophagy. Using CLEM, we have unam-

biguously identified and imaged key stages of Cvt vesicle assembly

in detail: Dense protein aggregates containing Cvt cargo components

accumulate in the cytosol and are enclosed by a double membrane

that expands and tightly wraps around the cargo (Fig 5D–F and

Movies EV2, EV3, EV4 and EV5). The high level of morphological

detail in our images and statistical shape measurements exceed

previous descriptions at lower resolution [12]. Our data provide

direct visual evidence of the proposed concept of exclusive autop-

hagy [24] where tight bending of the membrane around the cargo

excludes sequestration of cytoplasmic non-cargo material such as

ribosomes. By revealing the close apposition of cargo and phago-

phore membrane, we captured a crucial scaffolding role of cargo

and receptor proteins in mediating efficient and tight binding

between the nascent phagophore and cargo.

Our results provide molecular clues to this mechanism as we

have found that all main constituents of Cvt vesicles including the

receptor Atg19 are organized in defined oligomeric species. Our

crystal and EM structures of major cargo mApe1 and secondary

cargo Ams1 revealed that they form dodecamers or tetramers,

respectively, and thus represent two examples of enzyme complexes

that have evolved to self-assemble. The sequestration of enzymes

into homo-oligomers represents an assembly state ideally suited for

efficient packaging and cargo delivery to the vacuole, while it also

ensures exclusivity of the cargo. Su and colleagues revealed that the

positioning of the propeptide on a tetrahedral Ape1 cargo is critical

for cargo transport via the Cvt pathway by demonstrating that the

disruption of oligomeric interfaces prevents the formation of stable

dodecamers in vitro and the cargo from being incorporated into the

Cvt vesicle in vivo [31]. Our in vitro Atg19 pull-down also suggests

a possible role of Ams1 tetramers for selective recognition. Oligo-

meric structures are essential in other selective autophagy

processes. For instance, NCOA4 is a cargo receptor that directly

recognizes oligomeric assemblies of ferritin shells in a process that

is critical for iron homeostasis [38].

Consistent with the requirement for aggregation and in line with

the observations of particle aggregates in our CLEM images, we

observed a propensity of major cargo prApe1 dodecamers to form

higher-order assemblies in our EM preparations (Fig 1A). In previ-

ous experiments, it was not possible to observe the self-aggregating

property of prApe1 as it had been solubilized by detergent [31]. In

contrast to major cargo prApe1, secondary cargo Ams1 does not

exhibit a strong tendency to form higher-order assemblies although

EM images of Ams1 reveal occasional chains and larger aggregates

alongside single particles (Fig 2A). These modulated biochemical

self-interaction properties may be a discriminating feature that

defines the role of the secondary cargo Ams1 as opposed to the

primary cargo prApe1 in the Cvt assembly. Furthermore, we show

that Atg19 regulates the size of the prApe1 higher-order assemblies

and that Atg19 interacts with tetramers of secondary cargo Ams1. In

this way, the more abundant prApe1 can serve as a vehicle to carry

less abundant secondary cargo proteins like Ams1 via Atg19 interac-

tion to the vacuole [39]. Similarly, the selective autophagy receptor

p62 forms higher-order structures [40] through self-polymerization

[41], which are critical for the targeting of p62 to autophagosomes

[42,43]. The additional level of organization beyond soluble oligo-

mers in large molecular assemblies of cargo and receptors appears

to be critical to act as transport vehicles to carry additional cargo

proteins as well as molecular scaffolds assisting the envelopment of

the double membrane.
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Despite the observed tendency of prApe1 to aggregate into

large structures, the defined size of Cvt vesicles implies that

mechanisms to control cargo assembly exist in vivo. Atg19 acts as

an autophagy receptor bridging cargo proteins to the autophagy

core machinery via Atg11 and Atg8-decorated double membrane

of the Cvt vesicle [27]. We have found that Atg19 forms a trimer

in solution, raising the question whether the oligomeric platform

of Atg19 serves to bind multiple prApe1 dodecamers simultane-

ously. Our EM observations and co-sedimentation experiments

with the prApe1/Atg19 complex indicate that Agt19 interacts

with prApe1 dodecamers by competing with propeptide trans-

interactions as opposed to cross-linking multiple dodecamers. We

speculated that this efficient solubilization in vitro was the under-

lying mechanism that controls the size of prApe1 structures

in vivo. Indeed, our fluorescence microscopy experiments of Atg19

knockout S. cerevisiae cells show larger prApe1 puncta, demon-

strating a role for Atg19 in regulating the size of prApe1 aggre-

gates and consequently of the Cvt aggregate inside the Cvt

vesicle. Interestingly, the ~10-fold excess of prApe1 over Atg19

excludes the possibility of Atg19 saturating all available propep-

tides on the prApe1 surface. Specifically, when considering the

here-determined oligomeric states, it follows that on average one

Atg19 trimer is found alongside one Ams1 tetramer and three

dodecamers of prApe1 (1:1:3), thus leaving the majority of pro-

peptides available to participate in higher-order prApe1 assem-

blies. It should be noted that the determined stoichiometric ratio

of prApe1, Ams1, and Atg19 in vivo is likely to represent an aver-

age over a molecule population instead of well-defined complexes.

The relatively high ratio of Atg19 suggests an isotropic spatial

distribution of the receptor over the Cvt vesicle and disfavors the

A

B

Figure 4. Quantification of the Ape1, Ams1, Atg19 protein abundances in living cells.

A Epifluorescence microscopy images of the prApe1-GFP/Atg19-mCherry/ypt7D, Ams1-GFP/Atg19-mCherry/ypt7D, Atg19-GFP/Ape1-mCherry/ypt7D Saccharomyces
cerevisiae cells that were used to quantify the fluorescence intensity of GFP spots. Only colocalizing GFP and RFP spots were considered. BF represents bright-field
images.

B Bar plot showing the number of molecules of prApe1, Ams1, and Atg19 found in Cvt vesicles in living cells. Data are representative of two independent experiments
in which a total of 217 prApe1-GFP, 181 Ams1-GFP, and 233 Atg19-GFP spots were analyzed. Error bars indicate standard deviation (SD). ***P < 0.001; *P = 0.0176
(Z test).
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possibility of Atg19 decorating only the surface of the Cvt aggre-

gate. This interpretation is further supported by previous EM

micrographs of immuno-gold-labeled Atg19 receptor [24] and is in

line with its capability of solubilizing prApe1 aggregates, thus

imposing a mechanism of size control on the Cvt vesicle. Hence,

Atg19 is spatially distributed over the entire Cvt vesicle and the

relative levels of Atg19 and its cargo are critical to limit the inher-

ent aggregation propensity of prApe1, thereby determining the

overall size of the Cvt assembly. In analogy to the recently

described mammalian selective autophagy receptor p62 polymers

[40], the equilibrium between assembly and disassembly of Cvt

aggregates is tightly regulated by its native binding partners.

Together, we have structurally characterized cargo proteins of

the Cvt vesicle at various scales of resolution, laid out the

foundations of how the major cargo interacts with its designated

autophagy receptor and how the cargos can be placed into the

cellular framework of the Cvt pathway. In light of the available

literature, our data allow us to redraw the currently prevalent

model of Cvt vesicle formation: In the cytosol, prApe1 forms

homo-oligomers as dodecamers (Fig 6A) and assembles into

higher-order chain-like aggregates via its propeptide (Fig 6B).

Atg19 competes with prApe1 propeptide trans-interactions,

becomes an integral part of the Cvt aggregate, and thus limits

aggregate size (Fig 6C). In parallel, Atg19 also recruits Ams1

tetramers to the forming assembly. Hence, Ape1 dodecamer

cargos together with Ams1 tetramers and Atg19 trimers assemble

into a densely packed core in an approximate stoichiometric

ratio of 3:1:1, which determines the size of the forming Cvt

A B C

D E F

Figure 5. Correlative light and electron microscopy of Saccharomyces cerevisiae Cvt vesicles from resin-embedded cell sections.

A Fluorescence microscopy image of a resin section of prApe1-GFP/Atg19-mCherry/ypt7D cells, merge of green (prApe1-GFP) and red (Atg19-mCherry) channels.
Tetraspeck beads are detected in the blue channel.

B Electron tomography slice of the boxed area in (A). The outer and inner dashed green circles of 160 and 60 nm radius represent estimated 50 and 90% localization
accuracy, respectively. Insets show close-up views of a double (top) and single (bottom) membrane. Corresponding tomogram is shown in Movie EV2.

C Plot of the x and y dimensions of the Cvt vesicles obtained from localization correlation. The average dimensions give rise to spheroids with an average ellipticity of
11% (shown in dark gray). Both prApe1-GFP and prApe1-GFP/Atg19-mCherry datasets were included. The cases representing autophagosomes were excluded.

D Dense Cvt aggregate that is not surrounded by membrane. Corresponding tomogram is shown in Movie EV3.
E Cvt aggregate that is partially enwrapped by double membrane. White arrowheads indicate the double membrane. Corresponding tomogram is shown in Movie EV4.
F Cvt vesicle fully enclosed by double membrane. Bottom: Schematic representation. White arrowheads indicate the double membrane. Corresponding tomogram is

shown in Movie EV5.
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aggregate (Fig 6E). In conjunction with Atg8/Atg11, the double-

membrane phagophore wraps tightly around the Cvt aggregate to

enclose cargo and exclude non-cargo material (Fig 6F and G).

The ability of cargo and receptor components to self-interact

enables efficient packaging and provides an effective transport

platform for binding of additional cargo and membrane recruit-

ment through multiple binding sites. The analogy of our example

to other selective autophagy pathways from higher eukaryotes

[38,40] illustrates that studying the molecular details of cargo

assembly and Cvt vesicle formation provides common structural

clues to better understand the molecular mechanisms of selective

autophagy.

Materials and Methods

Cloning, expression constructs, yeast strains, transfection of
Sf21 cells

All clones were generated by InFusion cloning, following the manu-

facturer’s protocol (Clontech) unless otherwise stated. Saccharo-

myces (S.) cerevisiae mApe1, prApe1 and Chaetomium (C.)

thermophilum mApe1 (ct-mApe1) cDNAs were cloned into pETM33

to generate N-terminal GST fusion proteins. S. cerevisiae Atg19

cDNA was cloned into pETM40 to generate an N-terminal MBP

fusion protein. For Pichia (P.) pastoris expression of Ams1, the

A B C D E

F

H

I

G

Figure 6. Model of the Cvt pathway.

A–I prApe1 (A), the major Cvt cargo, forms homo-oligomers as dodecamers that (B) assemble into higher-order assemblies mediated by the N-terminal propeptide.
(C) These assemblies are capable of binding Atg19 that forms a trimer in solution. (D) Ams1, which forms a homo-oligomer as a tetramer, joins the Cvt assembly by
binding to Atg19 via a site that is distinct from the Ape1 binding site. (E) prApe1 dodecamers, secondary cargo enzymes such as Ams1 tetramers and Atg19 trimers,
are the main constituents of the Cvt aggregate in the cytosol. (F) The Cvt aggregate becomes enwrapped by a double membrane via Atg8 and Atg19 interaction to
form (G) the Cvt vesicle. Cvt assembly stages in (E, F, and G) are drawn respecting the determined average size of the vesicles, the dimensions, and stoichiometry of
the major cargo prApe1 and secondary cargo Ams1 found in this article. (H) After fusion with the vacuole, prApe1 is subjected to maturation while maintaining the
dodecamer organization. (I) Ams1 does not undergo a maturation process in the vacuole.
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pGAPZa vector (Invitrogen) was modified as in [44]. Ams1 muta-

genesis was performed using the QuikChange site-directed mutagen-

esis kit following the manufacturer’s protocol (Agilent). To generate

vectors for insect cell expression, GST-prApe1, GST-mApe1, and

MBP-Atg19 were cloned into pACEBACDual MCS1. Primer

sequences are available on request.

For bacterial expression, all constructs were transformed into

E. coli BL21 RIL cells and grown in lysogeny broth (LB) medium.

P. pastoris SMD1168 strain (Invitrogen) was transformed with

pGAPZ-His6-Ams1 wild-type and W234E mutant as described

Watanabe et al [44].

S. cerevisiae strains for quantitative fluorescence microscopy and

CLEM were generated by homologous recombination into the

endogenous gene locus with a PCR cassette. C-terminal tagging with

EGFP or mCherry as well as deletion strains was generated using

pYM28 (GFP), pFA6a-mCherry-KanMX4, and pFA6a-natNT2

cassettes, respectively [45]. Correct integration was verified by

DNA sequencing. After insertion of genomic tags, original strains

were mated and haploid spores were selected after sporulation. A

list of yeast strains generated can be found in Table EV1.

Baculovirus production was carried out following previously

described protocols [46]. Briefly, plasmids encoding GST-prApe1,

GST-mApe1, or MBP-Atg19 were integrated into baculoviral genome

by tn7 transposition via electroporation of DH10EMBacaY cells.

Baculoviral DNA was isolated and used to transfect 3 ml of Sf21 cells

at a density of 0.3 × 106 cells/ml using X-tremeGENE HP transfection

reagent (Roche). Cells were incubated for 60 h before the supernatant

containing baculovirus was removed (V0). V0 virus was then further

amplified and used for subsequent large-scale protein expression.

Protein expression and purification

BL21 RIL cells expressing S. cerevisiae or GST-ct-mApe1 were grown

at 24°C for 4 h after induction. Cells were lysed by sonication in 1×

phosphate-buffered saline (PBS), 500 mM NaCl, 2 mM MgCl2, 1 mM

dithiothreitol (DTT), 1 mg/ml lysozyme, and 1× EDTA-free protease

inhibitor cocktail (PrInh) (Roche). The supernatant was cleared by

centrifugation at 48,000 g and supernatant incubated with

glutathione beads (GE Healthcare) for 2 h at 4°C before beads

were washed extensively and protein eluted by cleavage with GST-

3C protease overnight at 4°C. mApe1 dodecamers were separated

from other oligomeric states by a continuous 10–30% glycerol

gradient run at 146,000 g for 16 h at 4°C in a SW 60Ti Beckman

rotor. In the case of S. cerevisiae mApe1, the GraFix protocol [29]

was performed by combining the 10–30% glycerol gradient with a

0–0.15% glutaraldehyde gradient in 50 mM Hepes pH 7.5 and

150 mM NaCl.

Ams1 wild-type and mutant W234E expression in P. pastoris was

based on described protocols [44]. Expression of S. cerevisiae GST-

prApe1, GST-mApe1, MBP-Atg19, and the Atg19/prApe1 complex

was performed in Sf21 insect cells. First, cells were grown in

suspension at 27°C until 1 × 106 cells and then they were infected

or coinfected with virus expressing the protein of interest and

harvested 72 h after growth arrest, lysed by sonication, and cleared

by centrifugation at 48,000 g. In the case of GST-prApe1, lysis was

performed in 50 mM Tris–HCl pH 7.5, 25 mM NaCl, 1 mM DTT, 1×

PrInh. Lysate was incubated with glutathione beads for 2 h at 4°C,

beads washed extensively, and protein eluted in the presence of

50 mM reduced glutathione and 0.1% Triton X-100 before cleavage

from GST by incubation with His-3C protease overnight at 4°C. The

cleaved protein was further purified by size-exclusion chromato-

graphy with a Superose 6, 10/300 GL column (GE Healthcare) run

in 50 mM Tris–HCl pH 7.5, 150 mM NaCl, 1 mM DTT. In the case

of MBP-Atg19 and the MBP-Atg19/prApe1 co-expression, lysis was

performed in 50 mM Tris–HCl pH 7.5, 150 mM NaCl, 5 mM MgCl2,

10% glycerol, 1 mM DTT, and 2× PrInh. The cleared lysate was

incubated with amylose beads (New England BioLabs) overnight at

4°C, beads washed extensively before protein was eluted with

10 mM maltose and cleaved with His-TEV protease overnight at

4°C. After cleavage, Atg19 was separated by DEAE ion-exchange

chromatography, whereas the Atg19/prApe1 complex was further

purified by SEC with a Superose 6, 10/300 GL column run in

50 mM Tris–HCl pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT.

Biochemical assays

Activity assay

Ams1 activity was measured according to an established protocol

[25,47].

SEC-MALS

Atg19 was concentrated to approximately 2 mg/ml in 50 mM Tris

pH 7.5, 150 mM NaCl, 0.5 mM TCEP. SEC of Atg19 was performed

at room temperature on a Superose 6 increase (10/300) column at a

flow rate of 0.3 ml/min. Following separation by in-line SEC, the

separated sample components were analyzed with a modular triple

detector array (Viscotek TDA 305, Malvern Instruments Ltd.,

Malvern, UK) to determine right-angle light scattering (RALS),

refractive index (RI), and UV-vis (UV). The TDA data were

processed using Omnisec software. The molecular weight (MWRALS)

of the species eluting from the SEC column was assessed in tripli-

cates using correlated concentration measurements derived from

baseline corrected RI in combination with baseline corrected RALS

intensities calibrated against a bovine serum albumin narrow stan-

dard (monomeric peak) for both SEC columns.

In vitro binding

Purified MBP-Atg19 (1 lM) or MBP alone (1 lM) was mixed with

his-Ams1 (1 lM), mApe1 (1 lM) or prApe1 (0.7 lM—the maximal

concentration achievable before protein precipitation) in buffer A

(50 mM Tris–HCl, pH 7.5, 25 mM NaCl, 5 mM MgCl2, 1 mM DTT,

and 0.2% NP-40) and incubated overnight at 4°C with gentle agita-

tion. Equilibrated amylose beads (125 ll) were added to each reac-

tion and incubated for 2 h at 4°C with gentle agitation. The amylose

beads were sedimented by centrifugation and washed four times

with 1 ml buffer A (3,500 g, 2 min at 4°C). Bound proteins were

eluted from the beads by boiling in SDS loading buffer, and the

eluates were analyzed by SDS–PAGE followed by staining with

Coomassie Brilliant Blue.

Co-sedimentation

Equivalent amounts of purified S. cerevisiae prApe1, prApe1/Atg19,

and Atg19 as control were centrifuged in a Beckman TLA100 rotor

for 3 h at 186,000 g at 4°C. Equivalent volumes of pellet and super-

natant were analyzed by SDS–PAGE followed by staining with

Coomassie Brilliant Blue.
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Western blot

prApe1-GFP/Atg19-mCherry/Dypt7 and prApe1-GFP/Atg19D/ypt7D
S. cerevisiae cells were grown at 30°C until OD600 nm = 1–1.2. Cells

were washed twice in ice-cold PBS 1× and immediately resuspended

in 50 mM Tris–HCl pH 8, 100 mM NaCl, 2.5 mM MgCl2, 0.25%

Triton X-100, 1 mM PMSF, 1 mM DTT, 1× PrInh. Cells were sub-

sequently lysed with glass beads using FastPrep�-24 (MP BIOMEDI-

CALS) set with following parameters: four cycles at speed 4, 15 s

each with 3 min cooling in between. Lysates were spun at 17,000 g,

4°C to remove cell debris. Equivalent amounts of clarified lysates

were subjected to western blot using anti-Atg19 antibody (poly-

clonal, 1: 200), anti-Ape1 antibody (polyclonal, 1:1,000), and anti-

tubulin antibody (TAT1, Abcam, monoclonal, 1:500).

Negative stain image reconstruction

Negatively stained specimens (sc-mApe1 and Ams1) for electron

microscopy (EM) were prepared by the droplet technique with 2%

uranyl acetate and imaged using a Philips CM-120 transmission

electron microscope, operated at 120 kV, and equipped with a

TVIPS 4k × 4k CCD camera. For GraFix-purified sc-mApe1,

30 micrographs were collected at an underfocus between 1.0 and

1.5 lm with a nominal magnification of 53,000 corresponding to

1.9 Å pixel size. A total of 5,481 particles were manually picked

using E2BOXER of the EMAN2 package [48] and class averages were

generated using IMAGIC and SPIDER [49,50]. We built the initial

models, first by aligning a set of 20 best-defined classes against a

Gaussian blob while imposing tetrahedral symmetry, second by

assigning the corresponding Euler angles manually and imposing

tetrahedral symmetry. Both initial models converged to the same

24 Å resolution structure after 20 cycles of iterative refinement with

SPIDER. For an initial 3D model of Ams1, a random-conical tilt

dataset was acquired on an FEI Polara microscope operated at

100 kV at an underfocus of 1.8 lm with a magnification of 59,000

corresponding to 1.91 Å pixel size on a US4000 Gatan CCD camera.

A total of 1,830 tilt-pair particles were selected, subjected to 2D clas-

sification, and used for a reconstruction using the EMAN2 random-

conical tilt protocol [48] while imposing D2 symmetry. Sub-

sequently, we further refined the structure using 9,865 untilted

particles in the SPIDER software suite to a resolution of approxi-

mately 31 Å.

Crystallization, model refinement, and homology modeling

Small bipyramidal crystals (5 × 5 × 5 lm) of ct-mApe1 (2.0–

3.0 mg/ml in 50 mM Tris–HCl, 50 mM NaCl, pH 7.5) were grown

using hanging drop vapor diffusion at 4°C after 3–7 days in 100 mM

Hepes (pH 6.6), 4 M sodium formate. For cryoprotection, crystals

were soaked for 5 min in 100 mM Tris–HCl pH 8.5, 4.6 M sodium

formate, 2 mM ZnCl2 supplemented with 15% (v/v) glycerol and

flash-cooled in liquid nitrogen. Diffraction data were collected at the

ID23-2 and EMBL P14 microfocus beamlines at European Synchro-

tron Radiation Facility and at the DESY PETRA III storage ring,

respectively, and processed with XDS [51] and SCALA [52]. Self-

rotation functions revealed four non-crystallographic threefold axes

and eight non-crystallographic twofold axes, showing the asymmet-

ric unit is composed of six ct-mApe1 subunits and dodecamers are

generated by crystallographic symmetry. The crystal structure was

solved by molecular replacement in Phaser [53] using a mammalian

tetrahedral aspartyl aminopeptidase model (PDB 3vat) with all side

chains truncated to Cb atoms. An anomalous difference Fourier elec-

tron density map calculated using data from the K absorption edge

for zinc revealed strong density at both metal sites. The molecular

replacement solution was refined through iterative rounds of

reciprocal-space refinement in Phenix [54] and manual rebuilding in

Coot [55]. Positional non-crystallographic symmetry constraints

were imposed throughout the refinement and zinc-ligand distances

were restrained according to Harding [56,57]. Table 1 summarizes

data collection and refinement statistics.

Single-particle electron cryomicroscopy and atomic
model building

To optimize the dispersity of the sample, His6-Ams1 at 0.4 mg/ml

was dialyzed into a 50 mM Tris–HCl, 175 mM NaCl, 75 mM imida-

zole buffer. The sample was applied to glow-discharged 300 mesh

Quantifoil R 2/2 grids, plunge-frozen in liquid ethane using an FEI

Vitrobot, and transferred to an FEI Titan Krios microscope operating

at 300 kV. Micrographs were recorded using EPU and a Falcon II

direct electron detector at an underfocus between 1 and 5 lm with a

total dose of 58 e�/Å2, accumulated in seven frames at a final pixel

size of 1.084 Å. For preprocessing, we used MotionCorr [58] and

determined the contrast transfer function parameters using

CTFFIND3 [59]. Subsequent processing steps of 3D structure refine-

ment of the data set were conducted with RELION-1.3 [60]: 85,274

particles were subjected to 2D classification followed by 3D struc-

ture refinement, and a homogeneous subpopulation of 33,588 parti-

cles was selected based on 3D classification and further processed

using the particle polishing procedure, which resulted in a final

6.3 Å resolution map based on the 0.143 Fourier shell correlation

criterion. The obtained map was sharpened by applying a B-factor

of �80 Å2 and filtered to 5.0 Å.

The complete quasi-atomic model of Ams1 was built by combin-

ing homology and de novo domain models followed by flexible EM

density-guided fitting. First, a homology model of the well-

conserved C-terminal portion (287–1,083) was computed using

MODELLER [61] based on the structure of Streptococcus pyogenes

a-mannosidase (PDB 2wyh) with a sequence identity of 17%.

Second, due to the lack of closely related structural templates for

the N-terminal part (1–286), Ams1 was subjected to a search for

modeling templates using MODexplorer (http://modorama.org, [62]

and Genesilico Metaserver (https://genesilico.pl/meta2, [63]). As a

result, for residues 45–203, we identified a jelly-roll fold from RetS

periplasmic sensor domain (PDB 2xbz, chain A) with significant

similarity scores to Ams1 (HHSearch [64] probability up to 96%)

compatible with the EM density. We could further improve the

visual match between the structure and EM density by introducing

fragments 45–55 and 114–127 from a putative b-galactosidase from

B. fragilis (PDB 3 cmg, chain A). However, for the remaining

N-terminal residues 1–44 and residues 204–286, no modeling template

could be identified while the unassigned part of the cryo-EM map

revealed four tubular densities forming an apparent four a-helix
bundle. In support, a-helical structure predictions of residues 209–

271, they were modeled de novo using Rosetta AbinitioRelax [65],

by generating 1,000 alternative models and selecting the model of

highest cross-correlation with the EM map. Finally, we assigned the
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remaining helical density to a predicted N-terminal helix for resi-

dues 17–27, and due to uncertainty of the sequence register, this

helix was built as an ideal poly-alanine helix. To resolve steric

clashes and geometry deviations, the combined structures were

energy-minimized with GROMACS [66] prior to flexible fitting with

the DireX software [67]. The C-terminal (residues 287–1,083) and

N-terminal regions (17–286) were fitted separately against map frag-

ments carved from the sharpened EM map. It should be noted that

the N-terminal four-helix bundle could alternatively be connected to

the a/b barrel of the adjacent subunit (Fig 2K, chain D). The

distance of the connecting residues and compactness of fold,

however, favored the connectivity of our current model. To limit

overfitting, we applied secondary structure restraints from the

reference structures. We evaluated a grid parameter search

(den_strength, den_gamma, pert_fac, den_strength_loop) by identi-

fying solutions with highest map correlation along with physically

plausible stereochemistry and clash scores. Finally, for our selected

model, we applied the parameter values 0.01, 0.8, and 0.06 for

pert_fact, den_strength, and den_gamma. To decrease the effect of

the reference structure for regions outside predicted secondary

structure elements, we scaled the den_strength for loop regions by a

factor of 0.35. With the application of D2 symmetry, we then gener-

ated the remaining monomers and the tetramer was refined against

the full map with strong restraints on the monomer structure. A

final energy minimization step with restraints on the main chain

atoms was performed to resolve deviations from reference stereo-

chemistry arising from the DireX refinement.

Quantitative fluorescence microscopy

Cells were grown in SC-Trp medium at 30°C till OD600 nm = 0.6.

prApe1-GFP, Ams1-GFP, and Atg19-GFP cells were individually

mixed 1:1 with Nuf2-GFP cells of the same mating type. Cells were

incubated for 10 min at room temperature to adhere on concana-

valin A-coated coverslips and then washed with SC-Trp medium.

Cells were imaged in 40 ll of SC-Trp medium at room temperature

with an Olympus IX81 wide-field epifluorescence microscope,

equipped with at 100×/1.45 objective and a Hamamatsu Orca-ER

CCD camera. Samples were excited with a X-Cite 120Q lamp (Olym-

pus) at 100% of power for 100 ms for the GFP channel and 250 ms

for the RFP channel. For each channel, the samples were imaged as

z-stacks of 23 frames (Fig 3H) or 21 frames (Fig 4A) spaced by

200 nm each. The stacks were acquired one frame at the time for

both channels. All the microscope setup was controlled through

Metamorph 7.5 (Molecular Devices). For Fig 3H, GFP patches of

prApe1-GFP/Atg19D/ypt7D cells were quantified as follows: The

background in the cells was subtracted by median filtering (ker-

nel = 20 pixels). The intensities of the patches were measured from

a rectangular selection in the frame of the z-stack where the patch

was brightest. The size of the rectangular selection was large

enough to surround the thresholded patch and was allowed to vary,

to accommodate the heterogeneity of patch sizes. The median inten-

sity of prApe1-GFP was normalized to the median intensity of Nuf2-

GFP spots. prApe1-GFP patches in prApe1-GFP/Atg19-mCherry/

ypt7D cells were quantified for comparison and were subjected to

identical procedure for the quantification and normalization of the

spot intensities. The error associated with each median was the

standard error for the median (SEM) calculated as:

r ¼ 1:4826 exp ðIÞ MAD
ffiffiffiffi

N
p

where MAD is the median absolute deviation computed on the log

transformation of the measured fluorescence intensities (I). The

error of the intensities normalized to the number of Nuf2 mole-

cules was computed propagating the standard errors for the medi-

ans accordingly. For Fig 4B, the quantification of the patches was

done by a custom-written software in Python 2.7 as detailed in

[36]. In brief, the number of prApe1-GFP, Ams1-GFP, or Atg19-

GFP molecules was quantified using Nuf2 molecules as a reference.

For each kinetochore patch, 280.6 � 16.1 molecules of Nuf2 were

counted. The number of Nuf2 molecules was quantified by

comparing Nuf2 and Cse4 and by considering five molecules of

Cse4 for kinetochore (Lawrimore et al [35], Picco et al [36]). The

image stacks were background-corrected by subtraction of the

median-filtered image to the image itself. The fluorescence inten-

sity of the patches was measured by integrating the fluorescence

intensity of each patch through the frames of the stack. Patches at

the beginning or at the end of the stack were discarded. For Ams1,

Ape1, and Atg19, only the patches that were colocalizing with an

mCherry marker were quantified: Atg19-mCherry for Ams1 or

Ape1 and Ape1-mCherry for Atg19.

Correlative light and electron microscopy

Sample preparation and data collection for the prApe1-GFP/ypt7D
dataset were performed as described previously [37,68,69], with

minor modifications for the prApe1-GFP/Atg19-mCherry/ypt7D
dataset. Briefly, cells were grown in YPAD medium at 30°C to an

OD600 = 0.6, high-pressure-frozen, freeze-substituted, embedded in

Lowicryl HM20, and sectioned to 300 nm. Grids were incubated

with 50 nm TetraSpeckTM beads (Life Technologies) and imaged with

an Olympus IX81 wide-field epifluorescence microscope equipped

with a 100×/1.45 objective and a Hamamatsu Orca-ER CCD camera.

Grids were subsequently incubated with protein A-coated gold

beads, stained with Reynolds lead citrate, and electron tomography

was performed on an FEI F30 TEM operated at 300 KV, equipped

with an FEI Eagle 4K CCD camera and a dual tilt holder (Fischione

Model 2040), using the SerialEM software [70]. Tomograms were

reconstructed using the IMOD 4.7.13 software package [71]. The

position of the fluorescent structures of interest was determined

using the correlation procedure described before [37,69].

Accession numbers

The electron microscopy maps of S. cerevisiae mApe1 and Ams1

have been deposited in the EM Data Bank and available with

accession codes (EMD-8167, EMD-8166). Atomic coordinates of

C. thermophilummApe1 and S. cerevisiae Ams1 have been deposited

at the Protein Data Bank under accession codes (5JM6, 5JM0).

Expanded View for this article is available online.
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