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Resolution-dependent loss of contrast in cryo-EM maps may obscure features at high resolution that
are critical for map interpretation. Post-processing of cryo-EM maps can improve the interpretabil-
ity by adjusting the resolution-dependence of structure factor amplitudes through map sharpening.
Traditionally this has been done by rescaling the relative contribution of low and high-resolution
frequencies globally. More recently, the realisation that molecular motion and heterogeneity cause
non-uniformity of resolution throughout the map has inspired the development of techniques that
optimise sharpening locally. We previously developed LocScale, a method that utilises the radial
structure factor from a refined atomic model as a restraint for local map sharpening. While this
method has proved beneficial for the interpretation of cryo-EM maps, the dependence on the avail-
ability of (partial) model information limits its general applicability. Here, we review the basic
assumptions of resolution-dependent contrast loss in cryo-EM maps and propose a route towards a
robust alternative for local map sharpening that utilises information on expected scattering proper-
ties of biological macromolecules, but requires no detailed knowledge of the underlying molecular
structure. We examine remaining challenges for implementation and discuss possible applications.

Introduction

Cryogenic electron microscopy (cryo-EM) enables structure de-
termination of biological macromolecules and their assemblies.
Technological advancements have transformed single-particle
cryo-EM into a central tool for structural biology that now rou-
tinely produces high-resolution structures of proteins and protein
complexes, approaching atomic resolution in favourable cases1,2.
Three-dimensional single-particle cryo-EM maps are obtained by
combining information from many images of a macromolecule in
differing orientations, where each image is a projection along the
direction of the incident electron beam. The low dose that can be
tolerated by biological samples before damage occurs leads to im-
perfect images with very low signal-to-noise ratio3,4. The sample
will typically represent an ensemble of the molecules and assem-
blies in different conformations and compositions. The require-
ment to average low signal-to-noise ratio images of structurally
different samples to generate a cryo-EM reconstruction implies
that the resulting three-dimensional structure will be an average
representation of the input conformers or assemblies. Together
with noise from solvent scattering, optical aberrations and inac-
curacies in the particle alignment process, such sample hetero-
geneity contributes to systematic variation of the signal-to-noise
ratios in different regions of the reconstructed electrostatic poten-
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tial map. Regions that are structurally very similar across many
particles will produce a stronger signal than regions that are dif-
ferent in structure or molecular composition5,6.

The signal-to-noise ratio in the images used in reconstruc-
tion and in the resulting electrostatic potential maps is highly
resolution-dependent. This resolution dependence is typically
captured in a B factor. The B factor models the collective effect of
factors related to the sample, the experiment, and the data pro-
cessing, as a Gaussian dampening function in reciprocal space7,8.
For this reason, it is standard practice to estimate the B factor
from a Fourier representation of the reconstructed volume and
use this information to optimise the resolution-dependent weight-
ing of its amplitudes to produce maps with increased clarity7,9–12.
Alternative scaling procedures have also been proposed13–16. The
desired outcome of all procedures is to enhance map contrast
such that it improves the representation of expected molecular
features at a given resolution, and facilitates their interpretation
in terms of atomic models.

Any filtering operation in Fourier space will have a global effect
in real space and hence will affect all local regions equally. Be-
cause the signal-to-noise ratio typically varies between regions,
global filtering is often inappropriate and can result in excessive
blurring of high-resolution regions or oversharpening of noisy
low-resolution regions of the map. This has lead to the develop-
ment of methods that attempt to account for this variation by per-
forming filtering locally17–22. Several of these approaches are re-
strained by information that comes from expectations on general
properties of macromolecular structures, and on their features in
the real-space map or its Fourier space representation16–18,21. We
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Fig. 1 The effect of the B factor on radial amplitude spectra and appearance of real-space densities from biological macromolecules.
(a) The natural logarithm of the radially averaged squared structure factors computed from the Fourier transform of an idealised α-helix
(R424DWLRVGYVLDRLLFRIYLLAVLAYSITLVTLWSIWH460; PDB ID 6y5a), simulated at different overall B factors. (b) Radial profiles of the
normalised structure factor computed for the helices. Note the decay of the distinctive local maximum at ∼4.5 Å with increasing B factor. (c)
Real-space densities of the idealised α-helix (top) and its main chain trace (bottom) simulated at different B factors. The colour code for B factors is
equivalent in (a-c).

here review the spectral properties of biological macromolecules
imaged by cryo-EM and explore how expectations on their scat-
tering behaviour can be used to improve cryo-EM density maps.

Results

Fourier spectra of biological macromolecules

The ideal three-dimensional reconstruction of a biological macro-
molecule or macromolecular complex would be a map of its elec-
trostatic potential at every point on a three-dimensional grid. The
signal in an electron potential map fades with resolution, and
as a consequence structural features towards the resolution limit
may become increasingly weak and difficult to interpret. This
behaviour can be readily visualised by representing a map as a
Fourier series and analysing the resolution dependence of the sig-
nal in the reconstruction by spherically averaging over the am-
plitudes |Fobserved(s)| of its Fourier coefficients Fobserved(s) – also
called structure factors – at each spatial frequency s. The result
of this procedure is a one-dimensional spectrum (or radial pro-
file) that contains information of the average image amplitude as
a function of resolution. For biological macromolecules, this am-
plitude spectrum can be thought of as a representation of protein
texture in reciprocal space and yields a profile with highly pre-
dictable features (Figure 1a,b): the spectrum peaks at the origin,
where all atoms scatter in phase and its amplitude is proportional
to the number of scattering atoms in the reconstructed volume. At
frequencies below ∼0.1 Å-1 (0.01 Å-2 in Figure 1a), the spectrum
displays an approximately quadratic decay characterised by the

shape of the molecular envelope and solvent. Beyond a resolu-
tion of ∼12-8Å (see Singer (2021) for an accurate derivation24),
the spectral behaviour can be approximated by that of a uniformly
random collection of independent atoms, and its average ampli-
tude is equivalent to the sum of the squared atomic form fac-
tors25:

|F(s)|2 =
N

∑
j=1

| f j(s)|2

The frequency range over which this relationship is applicable
is referred to as the Wilson range. The regular, recurring three-
dimensional arrangement of adjacent amino acid residues in pro-
tein secondary structures, or bases in nucleic acids, introduces
characteristic features in the radial pair-distribution function that
deviate from the assumption of uniformly random distribution.
This results in amplification or dampening of structure factor am-
plitudes at certain frequencies in the Wilson range, leading to
prominent peaks or dips in the radial profile26.

If the atoms were ideal point scatterers, the overall structure
factor would be constant beyond the cutoff frequency of the ap-
plicable Wilson range, leading to a "flat" spectrum. Because atoms
have shape and their form factors fall off smoothly with increas-
ing frequency, the overall structure factor amplitude also decays
smoothly as a function of resolution. In addition, the attenuation
of amplitudes as a function of spatial frequency is dependent on
a B factor. The B factor models the collective effect of factors
related to the sample, the experiment, and the data processing,
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Fig. 2 Local resolution and B factor variation in cryo-EM reconstructions. (a) Serotonin-bound 5-HT3A receptor (EMD-10692; thr:0.015). (b) Local
resolution mapped onto the surface representation of EMD-10692. (c) Local B factors, and (d) the square of the sample correlation coefficient of the
linear regression (coefficient of determination, R2) from fitting to the Wilson range, mapped onto the molecular surface of EMD-10692. The dashed
line separates a poorly resolved region. (e) Cartoon representation of a re-refined atomic model of 5-HT3A receptor (PDB ID 6Y5A) coloured by
residue-averaged atomic B factor. (f) Correlation between local B factors estimated by Wilson fitting and average B factor from the atomic model. (g)
Radial amplitude profiles for 5-HT3A receptor (EMD-10692) for map regions at high, intermediate and low resolution as determined by the FDR-FSC
procedure23. The insert shows an close-up of the region indicated by the dashed box.

as a Gaussian dampening function in reciprocal space7. Higher
values indicate stronger dampening and therefore lower signal at
higher resolution (Figure 1a,b). The effect of this behaviour in
real space is the progressive loss of high-resolution detail as the B
factor increases (Figure 1c, Figure S1). The dampening envelope
also affects the deviations caused by secondary structure from the
expected fall-off in the Wilson range, which become increasingly
obscured with increasing B factor(Figure 1b). In real-space den-
sity maps this manifests as the progressive blurring of discernible
periodicities in secondary structure elements (Figure 1c). If the
overall B factor is known, the original contrast can be restored by
multiplying each Fourier coefficient with the inverse of the damp-
ening function:

Frestored(s) = Fobserved(s)e
−(Bsharpens2/4),

where Frestored(s) and Fobserved(s) are the contrast-enhanced and
observed Fourier coefficient at frequency s, and Bsharpen =

−Boverall. This process is known as map sharpening.

Robustness of local B factor estimation in cryo-EM maps

Cryo-EM reconstructions frequently display substantial variation
in local resolution (Figure 2a,b). These arise, for example, from
non-coherent averaging due to structural flexibility inherent to
macromolecules, or from differences in molecular composition of

the averaged macromolecular assemblies. In addition to effects
from conformational and compositional heterogeneity, the qual-
ity of three-dimensional reconstructions is typically poorer at the
particle periphery when compared with the particle center due to
errors in orientation assignment and limitations of current recon-
struction algorithms. All of these effects result in lower resolution
in specific regions affected by these factors. Analogous to estimat-
ing local resolution through convolving each voxel in the recon-
struction with a mask (windowing) and calculating the Fourier
Shell Correlation (FSC)27,28 between two equivalent windowed
volumes from two independent half maps5, local B factors can
be estimated by line fitting to the Wilson range of radial profiles
calculated from the Fourier transform of windowed volumes. The
slope of this line is referred to as the Wilson B factor. Local resolu-
tion is correlated with local B factors17; density regions with low
local resolution display high local B factor, and vice versa (Figure
2c). It should be noted that determination of local B factors by
linear fitting to Guinier profiles from windowed volumes is not ro-
bust, as reflected by the coefficients of determination R2 of local B
factor estimates (Figure 2d). First, the number of available sam-
ples available is reduced in smaller, windowed regions of the map
and local fitting is inherently more noisy and variable. Perhaps
counter-intuitively, the quality of fit can also be adversely affected
in areas of higher resolution that extend only little further than
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Fig. 3 The effect of model accuracy on reference-based local sharpening. (a) Cartoon representation of unperturbed atomic model of 5-HT3A receptor
(PDB ID 6Y5A). (b) Close-up of a specific region of perturbed atomic models. The displayed region in boxed out in (a). (c) Radial profiles of
electrostatic potential maps computed from perturbed models. (d) Cartoon representation of a single chain of 5-HT3A highlighting (red) the helical
region shown in (f). (e) Unprocessed map of 5-HT3A receptor (left; EMDB-10692) and globally or locally sharpened maps obtained from unperturbed
or coordinate-perturbed atomic models. (f) Close-up of scaled density of helix Arg251-Thr272 from chain A of PDB 6Y5A coloured by local B factor.
Also shown is the cartoon representation of the helix segment (left) coloured by residue-averaged B factor.

3 Å, where secondary structure modulations in the Wilson range
of the radial amplitude profile are most prominent (Figure S2a-
c). In cases where map resolution extends sufficiently far (∼2.5Å
and beyond), line fitting can be done over the resolution range
unaffected by these modulations.

Alternatively, and perhaps more robustly, local B factors can be
estimated if atomic models are available for which atomic dis-
placement parameters (ADPs)29,30 can be refined(Figure 2e,f).
ADPs are related to the mean square displacement of atoms and
describe their degree of static and dynamic disorder, and errors
that may exist in the model. Atomic B factors can be computed
from ADPs by the expression:

B j = 8π
2⟨u2

j⟩,

where ⟨u2⟩ is the isotropic ADP that represents the mean square
displacement from the mean position of the atom j. An uncer-
tainty in the atomic position blurs the contribution of that atom
to the density. It follows that variation of ADPs changes the atomic
contributions to the overall, or local, calculated structure factor:

Fcalc(s) =
N

∑
j=1

f j(s)e(B js2/4),

where f j is the spherically symmetric form factor of atom j and
B j its isotropic atomic B factor. By optimising correspondence
between calculated and observed structure factors (or real-space
densities), atomic B factors can be determined during atomic
model refinement30–32. Since bonded atoms cannot oscillate in-
dependently, atomic models provide the opportunity to restrain
refinement of ADPs to follow reasonable physical assumptions
such that refined ADPs within residues, within a sequence of
residues or within rigid domains are locally correlated31–34. We

here assume atomic B factors to be isotropic, while in reality the
extent of blurring can be dependent on direction, for example due
to relative mobility of different domains and/or uncertainty in the
particle alignments. Such dependencies could be accounted for if
robust protocols for anisotropic refinement of B factors, such as
TLS refinement35,36, can be established for cryo-EM data.

If estimated reliably, local B factors can serve as an effec-
tive means to optimise local contrast in cryo-EM density maps.
Since the B factor determines the decay rate of the frequency-
dependent amplitude fall-off, local scaling of experimental map
amplitudes using radial profiles computed from a B factor-
weighted reference structure represents a form of local signal-
to-noise weighting (Figure 2g). These properties have been ex-
ploited previously for local map sharpening in the program Loc-
Scale17.

Reference-based local sharpening of cryo-EM maps.

Local sharpening using current implementations of LocScale is im-
plicitly dependent on the availability of an atomic model. At the
same time, the sharpening procedure itself serves to facilitate the
interpretation of the experimental map in terms of such a model,
which seems contradictory. Fortunately, in many cases at least
partial model information will be available and we have shown
previously that this often is a sufficiently good starting point for
local sharpening using an atomic model reference17. To quantify
the accuracy of prior information on molecular structure required
to perform effective sharpening using reference-based scaling, we
performed a series of experiments using a reconstruction of 5-
hydroxytryptamine receptor 3A (5-HT3A) bound to 5-HT (sero-
tonin)37 as our model system. In a first experiment, we randomly
perturbed atom positions of the atomic model at a root mean
square deviation (RMSD) of 1-20 Å within a mask encompass-
ing the molecular envelope and computed reference maps from
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Fig. 4 Effect of local B factor estimation on reference-based local sharpening. (a) All-atom representations of perturbed atomic models. Atoms are
shown as spheres and coloured by atomic B factor. (b) Local B factor correlation plot for unperturbed and perturbed models (left) and dependence
of the coefficient of determination (R2) on RMSD to the unperturbed structure. (c) Distribution of local B factor differences ΔB mapped onto the
molecular surface of 5-HT3A receptor. (d) All-atom representation of the original model with randomised B factor (left) and LocScale map obtained
using the randomised B factor reference. (e) LocScale map obtained using the 20 Å RMSD-perturbed atomic model with original B factor.

the perturbed models to scale the experimental density using Loc-
Scale (Figure 3a,b). We then compared the resulting maps to the
LocScale map computed from the original atomic model by com-
puting their pairwise FSCs. While even at 20Å RMSD the overall
effect is relatively small, increasing levels of perturbation lead to
gradual lowering of the FSC, most strongly affecting frequency
ranges close to the maximum map resolution (Figure S3a). At the
same time, increasing RMSD affects the relative strength of the
secondary structure deviations in the radial profile (Figure 3c).
Perturbation of the underlying atomic model results in two alter-
ations of the reference structure that can affect the effectiveness
of reference-based local sharpening. First, the random displace-
ment of atoms changes the underlying molecular structure, and
hence the radial structure factor of a windowed volume, which
will progressively break the spatial periodicity of secondary struc-
ture elements and approximate a true Wilson distribution of uni-
formly random, independent atoms. Our results show that the
deviations of the expected fall-off in the Wilson range persist to
∼2 Å random error, while above this value secondary structure
becomes hard to assign as these modulations have essentially
vanished (Figure 3b,c). Second, the perturbation of atomic po-
sitions will also increasingly change the local B factor distribution
for structures that display significant variation in local B factors.
Effectively, as model perturbation increases, local B factor corre-
lations are gradually lost until converging to a uniform average B
factor across the volume contained within the mask.

Compared to uniform sharpening with a global average B fac-

tor and consistent with previous observations17, local reference
scaling using an optimal model improves the representation of
density features by locally balanced sharpening and blurring in
regions deviating from the average map resolution (Figure 3e).
Closer inspection of three representative regions encompassing
helices M2 and MX, as well as the 5-hydroxytryptamine ligand,
reveals the effect of reference perturbation on the quality of lo-
cal sharpening (Figure 3f, Figure S3c-e). Consistent with the ob-
served effect on the radial profile (Figure 3c), perturbations <
5Å RMSD have relatively little effect on the average local B factor
and the result of local sharpening. Only at RMSD >10 Å, the local
B factor distribution is considerably altered and begins to affect
the accuracy of local scaling (Figure 4a-c), Figure S3c and S4b,c),
ultimately approaching that of global sharpening (Figure 4d). In
contrast, models with coordinate errors as large as 20 Å show ad-
equate scaling if local B factors are estimated correctly (Figure
4e). This indicates that even initial models with significant errors
can serve as meaningful scaling references provided their ADPs
can been refined.

Reference-based local sharpening using average profiles

We next explored the variation of secondary structure modula-
tions in the Wilson range of radial profiles computed from a large
set of experimental structures. From a set of 1000 structures
randomly selected from the Protein Data Bank (PDB)38, we ex-
tracted helix, sheet, DNA and RNA residues and computed av-
erage radial profiles from simulated electrostatic potential maps.
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Fig. 5 Modulation of the radial amplitude profile for proteins and nucleic acids. (a) Average radial amplitude profiles for α-helical, β-sheet and DNA
structures. Solid lines and shaded regions represent mean and ±1.0 σ confidence intervals, respectively.(b) Violin plots of the major maximum in the
Wilson range of α-helical and β-sheet profiles. (c) Radial amplitude profiles and (d) real-space densities for an idealised α-helix(R424-H460; PDB ID
6y5a) obtained by scaling a blurred map (B=300 Å2) with average reference profiles from all-α, all-β or mixed-type profiles.

As we were interested only in the effect of secondary structure
on the average profiles, waters, ligands, post-translational and
base modifications as well as hydrogen atoms were excluded from
these calculations. The folding of polypeptide chains into a three-
dimensional structure gives rise to the canonical α-helix and β-
sheet elements of protein secondary structure. These features
produce characteristic distances within the folded protein chain
that range between 4.5-7 Å. Our analysis revealed that experi-
mental profiles of secondary structure elements gave rise to highly
reproducible peaks and dips of the profiles within the Wilson fre-
quency range. We identified a strong local minimum at ∼6.2Å
(α,β), as well as characteristic peaks at 4.2 Å (α), 4.6 Å (β) and
in the 3-6 Å range (DNA) (Figure 5a), consistent with expecta-
tions from the pair distribution function of these structural ele-
ments26,39. While the average profiles for α and β appear very
similar, their distributions and the position of the local maximum
of the modulations in the Wilson range are distinctly different
(Figure 5b). We did not find characteristic fingerprints in RNA
profiles, possibly because of the large variation in RNA secondary
structure (Figure S5a). The overall highly similar radial profiles
suggest that generalised average profiles could be used as refer-
ence profiles in cases where explicit model information is missing.
We performed a series of experiments to test this possibility. First,
we computed a ground truth electrostatic potential map for an
α-helix encompassing residues Arg424-His460 of (5-HT3A) recep-
tor with isotropic B factor of 50 Å2. We then blurred the map
with an additional B factor of 250 Å2 to generate a target map for
density scaling. Next, we scaled the target map by imposing the

generalised reference profiles for α-helical and β-sheet texture, or
a mixed αβ profile obtained from averaging α-helical and β-sheet
profiles, each matched to the reference falloff with a B factor of
50 Å2. LocScale sharpening using either of the three generalised
profiles returned essentially identical sharpened maps with mu-
tual real-space correlation coefficients RSCC >0.995 (Figure 5c-d,
Figure S5b). From the above, it follows that implementation of lo-
cal sharpening could be achieved using reference profiles instead
of explicit model information. It should be noted that, whereas
average profiles in the Wilson range are very similar across many
protein structures, they may differ substantially in the low resolu-
tion range where the fall-off is primarily dependent on molecular
shape (Figure S5c).

Limitations of local sharpening using model-based references

Current implementations of reference-based local density sharp-
ening depend on the availability of at least approximate model
information, which can give rise to important limitations17. We
here used 5-HT3A as a model system to illustrate these issues.
One example is the presence of post-translational modifications
such as N-linked glycosylation, with often heavily branched gly-
can chains that may extend substantially beyond the protein sur-
face40. Due to their inherent flexibility and associated weak den-
sity, these modifications can often not be built reliably in glob-
ally sharpened maps. Similar issues arise with detergent belts, or
lipid discs, in reconstructions of purified membrane proteins (Fig-
ure 6a,b). If the glycan is not, or only partially modelled, then
a model-dependent scaling procedure may lead to inadvertent
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Fig. 6 Limitations of model-based sharpening. (a) LocScale maps for 5-HT3A (thr. 0.08) obtained using a window size of 25 Å(left) and 50 Å
(right). (b) Fitted atomic model (PDB ID: 6Y5A) with asparagine residues at N-linked glycosylation sites shown as spheres (left) and confidence map
at 1% false discovery rate (FDR, right). (c) Detailed view of one of the glycosylation sites (Asn82, chain E) from the LocScale maps obtained with
25 Å (top) and 50 Å (bottom) scaling windows. The transparent outline shows the contour of the confidence map at 1% FDR. (d) Synthetic map
of 5-HT3A with the top part intentionally blurred, and (e) a partial model used as scaling reference superimposed (left). (f) LocScale maps obtained
using a partial model with a window size 25 Å (left) and 50 Å (right).

dampening of weak glycan-associated signal outside the modelled
molecular boundary. This is readily visible when comparing a lo-
cally sharpenened map for EMD-10692 obtained with LocScale
using a reference model not containing glycans, and a confidence
map thresholded at 1% false discovery rate (FDR) (Figure 6a).
Confidence maps are based on the statistical framework of multi-
ple hypothesis testing and provide a robust way to visualise "true"
molecular boundaries of cryo-EM electrostatic potential maps ir-
respective of the relative strength of density signal41. To appreci-
ate the effect of the model-based reference on local sharpening, it
is instructive to zoom in closer on one of the glycosylation sites in
5-HT3A (Asn83). Whereas the glycan density is emphasised in the
LocScale map, the confidence maps of the same region spans a
substantially expanded volume associated with this glycosylation
site, suggesting that the locally sharpened map does not recover
the associated signal completely (Figure 6c). This is related to
the dimensions of the scaling window (25 Å), which will lead to
dampening of any signal extending further than half the window
size beyond the limiting voxel of the scaling mask.

Inadvertent dampening of signal by reference-based scaling is
a prevalent issue whenever model information is incomplete. To
further illustrate this effect, we generated a target map from an
atomic model of 5-HT3A in which we intentionally blurred a part
of the map to simulate a density region that cannot be modelled
(Figure 6d,e). Using a partial model as the scaling reference
will improve density representation in regions covered by this
model, but will make density "disappear" progressively beyond

the molecular boundary of the model (Figure 6f). While some
of the described effects can be mitigated by the use of larger
scaling windows, or iterative schemes of scaling and model ex-
tension17, these experiments illustrate an important limitation of
the current implementations of reference-based scaling methods
that may spill over to other approaches using the results of these
methods, for example when using such maps as training targets
for density modification based on deep neural networks22.

Conclusions
Cryo-EM map sharpening remains an essential step of cryo-EM
structure determination to guide atomic model building and
help map visualisation. It has become apparent that global ap-
proaches are often insufficient to reflect the variation of signal-
to-noise ratio in different regions of a cryo-EM reconstruction.
Methods that attempt to optimise map contrast locally have be-
come reliable tools in this process17–22,42. It is an important
requirement that such methods preserve the expected physical
properties for electrostatic potential maps of biological macro-
molecules8,13,15–17,24,25.

We here reviewed the potential and limitations of incorpo-
rating prior knowledge about scattering properties and macro-
molecular features from known protein structures. Information
such as expected scattering mass, the definition of boundaries be-
tween macromolecule and solvent, and secondary structure con-
tent can all be effectively used to restrain scaling of cryo-EM den-
sity maps17,18,21. We have previously shown that such informa-
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tion can be efficiently utilised by using an existing atomic model
as a scaling reference. The general concepts laid out in this paper
suggest that the restraints of reference-based sharpening can be
exploited in future implementations without making explicit ref-
erence to atomic models. Indeed, our results demonstrate that
model information is not necessarily required to approach op-
timal contrast restoration through reference-based sharpening.
The challenge lies in implementing robust procedures to esti-
mate overall scattering mass, local B factors and local secondary
structure directly from the raw three-dimensional reconstruction.
Once known with sufficient accuracy, these ingredients are suf-
ficient to construct effective radial profiles for local scaling of
Fourier coefficients in the absence of any atomic model. Such
approaches will be useful to mitigate the risk of systematic bias
introduced by incomplete model information. More generally, the
requirement for robust map sharpening methods can be expected
to increase as high-resolution subtomogram averages from in situ
studies43,44 and native purifications45,46 accumulate, for which
conformational heterogeneity may turn out yet more prominent
and the exact molecular composition possibly unknown. We are
working towards such methods.
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Methods

All the data processing was done using Python. The latest imple-
mentation of LocScale47 was used to perform map sharpening.

Analysis and data processing was performed using our in-house
Python library EMmer48. EMmer makes use of functions from
mrcfile49, gemmi50 and Biopython51 to perform computations
related to 3D density maps and atomic coordinates. Numerical
computation and statistical analysis was done using the numpy,
scipy and scikit-learn Python libraries. The PWLF library was used
to obtain a piece-wise linear fit function to extract information
from radial profiles. Local resolution of the deposited half-maps
was computed by permutation testing of FSC resolution using the
FDR-FSC procedure23.

All graphical plots were made using seaborn and matplotlib
libraries. All visualisation of maps and atomic coordinate models
was performed using UCSF ChimeraX software (version 1.3)52.

Amplitude scaling

All the primary data analysed in this work are available in the
public domain. The unsharpened and unfiltered cryo-EM density
map of 5-HT3A (EMD-10692) and the associated atomic coordi-
nate model (PDB ID: 6y5a) were obtained from the EMDataRe-
source Project and the Protein Data Bank38. The unprocessed
map (the sum of the unfiltered half-maps) was uniformly sharp-
ened with a B factor of -107 Å2 and used as target for atomic
model refinement. The deposited atomic model was re-refined
using REFMAC531 with jelly body restraints49. Atomic displace-
ment parameters of the fitted atomic model were subsequently
refined without positional refinement using Servalcat42. Elec-
tron potential maps from the refined atomic model were gen-
erated using the pdb2map function in EMmer, which employs
the gemmi.DensityCalculatorE class to calculate the B factor
weighted structure factors using electron atomic form factors53.

LocScale performs amplitude scaling using a rolling window of
25 Å. For each local window, the radially averaged amplitudes of
the unsharpened window are scaled to match the radial profile
of the reference map window by multiplication with a frequency-
dependent scaling factor k(s) ∈ R≥0

k(s) =

{
Freference
Fobserved

, if Fobserved ̸= 0

0, otherwise

where Freference(s) ∈ R≥0 and Fobserved(s) ∈ R≥0 are radially aver-
aged structure factor amplitudes at frequency s for the reference
and the observed experimental map, respectively.

The value of the central voxel of the scaled window is then
assigned to the corresponding voxel position of a new map.
The process is repeated over all the voxels in order to obtain a
contrast-optimised density map. To reduce computation time, the
procedure was restricted to voxels contained in a binary mask,
which was obtained from an atomic model (Figure 3 and Figure
4) or from FDR based confidence map41 thresholded at 1% FDR
(Figure 6).
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Perturbation of reference models
All atom positions in the refined atomic model were perturbed
randomly with an increasing RMSD magnitude. The position of
each atom was perturbed as follows:

r j = r0
j + rkick

The magnitude of the kick vector is chosen randomly within a
uniform distribution ranging between 0 and 2 · rkick, where rkick

is the desired RMSD (in Å). Atomic positions are perturbed such
that the new positions lie within a defined molecular boundary
to ensure that the total scattering mass per unit volume remains
consistent for all structures. This mask is obtained by binarising a
model map comprising all voxels extending 3Å outward of atom
positions in the model, and smoothing with a cosine edge filter
over 5 voxels.

Generation of average radial profiles
An initial set of 1000 coordinate models were randomly selected
from the PDB. Among these, structures with a unit cell greater
than 256 Å were discarded from analysis. The isotropic B fac-
tor of all atoms in the selected PDBs was set to zero. To obtain
pure α-helix or β-sheet profiles for each structure, a secondary
structure assignment was carried out for each residue using the
DSSP algorithm54. Each coordinate model was then split into
three individual models based on the residue selection from the
DSSP assignment, containing either α-helix, β-sheet or random
coil residue sequences. Similarly, nucleic acid models were ob-
tained by separating out residues containing the five canonical
nucleobases for both DNA and RNA residues. Synthetic electro-
static potential maps for all models were calculated using the
pdb2map function in the EMmer package. All synthetic maps were
re-sampled on a cubic grid with 256 Å cell edge and a voxel size
of 0.5 Å. To avoid sampling errors during map generation from an
atomic model with zero B factor, the set_refmac_compatible_-
blur method implemented in gemmi was employed to add an
additional isotropic atomic displacement parameter Badd to com-
pute the structure factors55. Correction of this modification
and extrapolation to zero B factor was then done by multiply-
ing each Fourier coefficient with exp(Badds2/4) at each frequency
s. Radially averaged Fourier amplitudes for each simulated den-
sity maps was computed using the EMmer function compute_-
radial_profile. The resulting profiles for secondary structure
and nucleotide types were averaged (α-helical, N=536; β-sheet,
N=506; DNA, N=306 and RNA, N=247) to obtain reference av-
erage profiles and confidence intervals for each type.
To obtain the characteristic frequencies of Debye effects in α, β
and DNA profiles, a four segment, piece-wise linear fit to the ra-
dially averaged amplitude profiles was performed using the PWLF
library and filtering out the breakpoints between 6 Å and 3 rofiles
was found to be 0.98 (σ : 0.005) and that of β profiles was 0.98
(σ : 0.007).
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Fig. S1 Influence of B factor on real-space density of side chain representation. (a) Segment of α-
helix(R424DWLRVGYVLDRLLFRIYLLAVLAYSITLVTLWSIWH460; PDB ID 6y5a) used to simulate real-space density at different atomic B
factors. Close-up of side-chain density for (b) TRP,459 and (c) TYR,441 residues at different B factors. The colour codes for (b) and (c) follow the
rainbow scheme shown at the bottom
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Fig. S2 Robustness of (local) B factor estimation by fitting in the Wilson region. (a) Coefficient of determination (R2) from linear regression fitting
in the Wilson regime mapped onto a surface representation of 5-HT3 (EMD-10692). (b,c ) Real-space density segment (left) and radial profile (right)
of two map regions with moderate (b) and good (c) coefficient of determination R2 of the local B factor). Fitting in the better resolved region in (b;
FDR-FSC:2.4 Å) is adversely affected by stronger secondary structure modulation of the amplitude spectrum.
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Fig. S3 Influence of model perturbation on reference-based scaling. (a) Fourier Shell Correlation of LocScale maps obtained using atomic models with
increasing coordinate perturbation with respect to a LocScale map obtained with unperturbed atomic model (RMSD=0Å). Note that the perturbed
curves show a dip near the location of maximum local resolution in the map (∼ 2.5Å) (b) FSC dip analysis with an additional blur (B=100 Å2)
for the atomic models in (a). The position of dip in the FSC curves shifts left towards lower resolution when compared with (a). (c) Close-up of
scaled density of helix Arg251-Thr272 from chain A of PDB 6Y5A (coloured by local B factor) obtained using perturbed atomic models. (d) Close-up
of helix Asp319-Trp331 from chain E of PDB 6Y5A from the unprocessed map (left), globally sharpened map and LocScale maps obtained from
unperturbed and perturbed atomic models. (e) Close-up of density enclosing the 5-hydroxytryptamine (serotonine) ligand in the unprocessed map
(left), globally sharpened map and LocScale maps using unperturbed and perturbed atomic models. The threshold for each detail view is shown below
its corresponding figure.
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Fig. S4 Effect of model perturbation on B factor distributions. (a) All-atom representation of atomic models perturbed with an increasing RMSD
magnitude coloured by the atomic displacement with respect to the unperturbed structure (b) Distribution of local B factor differences ΔB of the
perturbed vs. unperturbed models mapped onto the surface representation of the LocScale map obtained from an unperturbed atomic model. (c)
Local B factor correlation plots for the unperturbed and perturbed models for different RMSDs.
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Fig. S5 (a) Average radial profiles for pure RNA structures. Solid line and shaded regions represent the mean and ±1.0 σ confidence intervals. (b)
FSC curves between scaled maps obtained using an average α-profile or average β-profile (purple), and average α-profile or mixed α/β-profile (red).
(c) Radial profile of 17 PDB structures showing convergence near the Wilson range (d) Combined plot showing the average α-profile, β-profile and a
mixed α/β-profile.
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